promass 60 promass 63

Flow measurement Service manual

General Information

This manual is written for service technicians. The Promass measuring system should only be repaired by qualified personnel.

This service manual describes the Promass 60 and Promass 63 measuring systems. It is valid for software versions V1.00.XX (amplifier) and V1.00.XX (communications module) and above. Further information on updating and supplements is available from your local Endress+Hauser Sales Office.

The operating manuals for the Promass 60 (BA 013D/06/e) and Promass 63 (BA 014D/06/e)measuring systems are also part of this service manual.

Safety

The instruments are built and checked according to EN 61010, "Protection Measures for Electronic Equipment for measurement, Control, regulation and Laboratory Procedures" and have left the factory in a safe condition.

Warning!

When removing the housing cover under power, the protection status is no longer valid. Therefore, always switch off the power supply before opening the instrument.

All local regulations concerning the operation and repair of electrical instruments must be strictly observed.

Do not carry out repairs or soldering in hazardous areas.

Under no circumstances should soldering of the boards be carried out by service engineers. Do not unsolder any SMD components. All existing regulations covering Ex boards must be strictly adhered to! Ex devices should only be opened after the mains voltage is switched off and after a minimum cooling time of 10 minutes.

Regulations governing repair

All instruments sent to Endress + Hauser for repair must be free of all dangerous or poisonous chemicals (acids, lyes, solvents, etc.). Please do not return instruments unless every possible step has been taken to completely remove dangerous material. If you do send instruments back to the factory for repair please send them with the completed form "Recognition of safety" signed by the user. Remote versions: return also DAT

The Promass measuring system fulfils all IP 67 and NEMA 4X protection requirements (sensor optional in IP 68). All transmitter and sensor housing screws should be undone by qualified and trained personnel only otherwise the protection guarantee is no longer in force. All gaskets and screws are to be replaced and tightened.

Please protect your electronic boards against electrostatic discharges. Ground yourself and your work area. Always use special conducting plastic bags for transportation of the electronic boards.

Release of programming levels for Promass 63

- Release of programming level: 63 (factory setting)
- Release of service programming level: 4685

Checklist of service items

- Multimeter with continuity tester
- Two-channel oscilloscope
- Flowjack with Promass adapter or simulation board, test point plug
- Replacement electronics modules
- Service software Prospy, Interface box, Laptop or PC

Summary of Contents

G	eneral Information	2
	Safety	2
	Regulations governing repair	
	Release of programming levels for Promass 63	
	Checklist of service items	
1.	Construction of the Promass	5
2.	Instructions on troubleshooting	6
	2.1 Response of the measuring system to fault or alarm	6
	2.2 System check for Promass 60	7
	2.3 System check for Promass 63	8
	2.4 Possible errors, causes and remedial action	9
	2.5 Checking the amplifier at test points TP5, TP14, TP10 and TP13	18
	2.5.1 Resonant frequency at TP14 against TP12 (ground)	18
	2.5.2 Measuring pipe oscillation at TP14 against TP12 (ground)	18
	2.5.3 Oscillation amplitude signal at TP10 against TP12 (ground)	19
	2.5.4 Excitation current at TP13 against TP12 (ground)	19
	2.6 Checking the Promass 63 communications module (HART, RS 485, current)	19
	2.7 Checking other systems using simulation of current and frequency output of the Promass 63	21
	2.8 Connection and functions of the Flowjack flow simulator and simulation board	22
	2.8.1 Simulation board for checking the amplifier	22
	2.9 Checking the sensor	23
	2.9.1 Resistance of the electrodynamic sensors	23
	2.9.2 Resistance of the excitation coil	24
	2.9.3 Resistance of the temperature sensors	24
	2.10 Checking the application	24
	2.11 Service tools Promass 63	26
	2.11.1 Function group SENSOR DATA	26
	2.11.2 Function group SERVICE & ANALYSIS	27
	2.12 Using the service software Prospy	30
3.	Electrical data	31
	3.1 Connection diagrams for remote version	31
	3.2 Cable specifications	31
	3.3 Fuse ratings for power units	31
4.	Repair and service	32
	4.1 Replacing the electronic boards of the Promass 60	32
	4.2 Replacing the electronic boards of the Promass 63	33
	4.3 Design of the electronic boards	
	4.4 Block diagram of the Promass electronics	36
	4.5 Updating the electronics from Promass 60 to Promass 63	38
	4.6 Changing the power supply variants	38
	4.7 Electromagnetic compatibility EMC/RFI	39
	4.8 Operating overview for Promass 60	39

4.9 Local display for Promass 60	
4.10 Operating overview for Promass 63	41
4.11 Programming matrix Promass 63	42
4.12 Zero point adjustment	43
4.12.1 Static zero point adjustment	43
4.12.2 Dynamic zero point adjustment	43
4.13 Service labels	44
4.14 Exploded diagram and spare parts list forPromass 60/63	45

1. Construction of the Promass*

* Display and amplifier of the Promass 63, communication module for the Promass 63 only

Fig. 1: Construction of the Promass

2. Instructions on troubleshooting

2.1 Response of the measuring system to fault or alarm

Condition of measuring system	Transmitte r	Response of measuring system	
System operating	Promass 60	Status output closed, i.e. open collector = conducting	
correctly	Promass 63	Relay contact Relay 1* = closed 22	
		Status output open, i.e. open collector = non-conducting	
F		Pulse output not operating	
Fault, system error (Error due to instrument	Promass 60	Current output set to 0 or 2mA according to programmed current output (0 or 4mA)	
failure)	1 10111233 00	Display: Two error segments visible, display flashing	
		Green LED on amplifier board flashing Warning! Do not open Ex devices in hazardous area	
		Error message shown on display	
		Relay contact Relay 1* = open 22	
	Promass 63	Signal outputs respond according to the programmed response on error	
Alarm, process error (Error due to process	process errorPromass 60Promass 60(>500 Hz, > 25 mA segment on display)		
conditions)	Promass 63	Alarm message shown on display Response of Relay 2 according to programming Error output (Relay 1) not affected	
* Factory set Relay 1 = make communications board (see Fig		eak contact can also be set as required by using a jumper on the	

Caution!

Positive zero return and simulation:

The response of the measuring system is changed if these functions are activated. They should be deactivated during diagnosis (troubleshooting).

Please refer to section 7 in the installation and operating manual for the response of the outputs with active positive zero return and simulation.

2.2 System check for Promass 60

2.3 System check for Promass 63

2.4 Possible errors, causes and remedial action

Promass 63: Error description by calling up diagnosis function or check error output. Promass 60: ERROR indication (with local display,Prospy) or check status output.

Application errors are indicated according to the following priority:

- 1: Tubes are not oscillating
- 2: Amplifier fault
- 3: Sensor out of tolerance
- 4: Max. excitation current
- 5: Medium inconsistent
- 6: Too high flow velocity
- 7: Empty pipe detection

Using Prospy in conjunction with Promass 60 only the error with the highest priority is indicated.

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: SYSTEM ERROR	LOW VOLTAGE DETECTED	
AMPLIFIER	The amplifier detects a power voltage which is too low.	
	Mains voltage too low.	Ceck mains voltage
	Power supply defective.	Check power unit and replace electronic module or power supply board if necessary.
	Amplifier defective.	Replace electronic module or amplifier board.
	DAT FAILURE	
	Error on access to DAT data.	
	DAT on the amplifier is missing or	Use new DAT.
	defective.	Note! The sensor data must then be
		reprogrammed!Use Prospy with Promass 60.
	EEPROM FAILURE	
	Error on access to EEPROM data.	
	EEPROM (or DAT) on amplifier is defective.	Check DAT or replace electronics module or amplifier board.
	RAM FAILURE	
	Error on access to working memory (RAM) of the amplifier.	
	RAM defective.	Replace electronic module or
		amplifier board.
	NO DIAGNOSIS	 Check the amplifier with the simulation board or Flowjack (see Page 22).
		2. If this is OK, then check the sensor (see Page 23).

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: SYSTEM ERROR AMPLIFIER (continued)	TEMP. CIRCUIT FAILURE Temperature circuit on the amplifier is defective.	Replace electronics module or amplifier board.
	ASIC FAILURE	
	The ASIC on the amplifier is defective.	Replace electronics module or amplifier board.
	TEMP. SENSOR CARRIER TUBE	Check the temperature sensor of the containment tube (sensor) using the connecting plug (see Page 23).
		If the temperature sensor is defective, then the flowmeter must be replaced.
	TEMP. SENSOR MEAS. TUBES	Check the temperature sensor of the carrier tube (sensor) using the connecting plug (see Page 23).
		If the temperature sensor is defective, then the flowmeter must be replaced.
F: SYSTEM ERROR	LOW VOLTAGE DETECTED	
POWER SUPPLY	The power supply is supplying a power voltage which is too low.	
	• The power supply voltage to the instrument is too low.	Check the power supply voltage to the instrument.
	• Power supply filter defective.	Replace power supply filter.
	• Power supply defective.	Replace electronics module or
		power supply.
F: NO DATA RECEPTION	NO DIAGNOSIS	
	Data transfer between amplifier and Com module not possible.	
	Amplifier defective	Check the amplifier with the simulation board or Flowjack at TP9 and TP14 (see Page 22) and replace electronics module or amplifier if necessary.
	 Optocouplers on the Com module are defective. 	Check Com module (see Page 20) and replace electronics module or Com module if necessary.

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: VALUE NOT ACCEPTED	NO DIAGNOSIS Communications problem between amplifier and Com module.	If the message remains, then the system is not able to measure. Switch off the power supply and restart. If the message still remains then replace the electronics module.
F: TUBES NOT OSCILLATING	 NO DIAGNOSIS Application problem Excitation coil of the sensor is defective Amplifier is defective 	Check application (gas, solids, density, etc. see Page 24). Check the excitation coil of the sensor (see Page 24). Replace flowmeter if necessary. Check the amplifier with the simulation board (see Page 22) and replace electronics module or amplifier if necessary.
	Power supply is defective	Replace electronics module or power supply.
F: ELECTRODYN. SENSOR (PICKUP FAILURE)	NO DIAGNOSISThe sensor coil is defective.	Check the sensor coils of the sensor (see Page 23). Replace the flowmeter if necessary.
	• The amplifier is defective.	Check the amplifier with the simulation board (see Page 22) and replace the electronics module or amplifier if necessary.
F: SYSTEM ERROR	LOW VOLTAGE DETECTED	
COM MODULE	Com module defective	Replace the electronics or Com module.
	• Power supply is defective (power supply does not supply the required 24 V to the Com module)	Replace electronics module or power supply.
	VOLTAGE REFERENCE	
	The reference voltage of the Com module is outside tolerance. The correct functioning of the current output is no longer guaranteed.	Replace the electronics or Com module.

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: SYSTEM ERROR	EEPROM ERROR	
COM-MODULE	Error on access to EEPROM data.	
(continued)	Com module is defective.	Replace the electronics or Com module.
	RAM ERROR	
	Error on access to the RAM of the Com module.	
	RAM is defective	Replace the electronics or Com module.
	ROM ERROR	
	Error on access to the program memory of the Com module.	
	Program memory (EPROM) is defective.	Use new EPROM with software. Ensure that the correct software version is also used.
	Com module is defective	Replace the electronics or Com module.
	EEPROM HW DATA ERROR	
	The EEPROM of the Com module (hard and software identification) is damaged or a part of the data is overwritten.	1. With the service code (4685) in the function group SYSTEM PARAMETER open function SYSTEM RESET and select RST HW DATA
	Default values from the ROM are loaded. The measuring system can still operate on a makeshift basis using these values.	ERR. 2. Reprogram the matrix. 3. Calibrate the current outputs. Note! The totaliser is automatically reset to "0".
		Note the further error messages:
		SYSTEM ERROR COM MODULE HW-TYPE INCOMPATIBLE
		SYSTEM ERROR COM MODULE HW-VERSION INCOMPATIBLE
		(see error messages below)
		These error messages cannot be switched off. Replace the electronics or Com module.

Note!

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: SYSTEM ERROR COM-MODULE	EEPROM PARA.DATA ERR	
(continued)	A part of the EEPROM data of the Com module (parameter block: matrix entries, process data) is damaged or has been overwritten.	1. With the service code (4685) in the function group SYSTEM PARAMETER open function SYSTEM RESET and select RST PARA, DATA ERR.
	Default values stored in the ROM are loaded. The measuring system can still operate using these values.	2. Reprogram the matrix.
	EEPROM TOT. DATA ERROR	
	A part of the EEPROM data of the Com module (totaliser block) is damaged or has been overwritten.	With the service code (4685) in the function group SYSTEM PARAMETER open the function SYSTEM RESET and select
	The default value "0" in the totaliser is loaded.	RST TOT. DATA ERR. Note! The totaliser is automatically reset to
	EEPROM DEFAULT VALUES	"0". Check the default values loaded and reprogram if necessary.
	The EEPROM of the Com module is empty. The default values stored in the ROM are (software identification, matrix entries, current calibration data) loaded.	This error message should not be indicated when the system is restarted. If this is so, then the Com module is defective and must be replaced. Note the further error messages:
		SYSTEM ERROR COM MODULE
		HW-TYPE INCOMPATIBLE
		SYSTEM ERROR COM MODULE
		HW-VERSION INCOMPATIBLE (see error messages below)
		These error messages can only be switched off if the hardware type and the hardware revision no. of the Com module are entered using the service software PROSPY. Otherwise replace the electronics or Com module.

System error (fault) F:	Cause Promass 63: diagnosis function Promass 60: Prospy	Remedial action
F: SYSTEM ERROR COM-MODULE	HW-TYPE INCOMPATIBLE	
(continued)	An incorrect Com module has been fitted; e.g. RS485 instead of HART [®] .	Check the Com module version and replace it with the correct one if necessary.
	HW-VERSION INCOMPATIBLE	
	An incorrect hardware version of the Com module has been fitted.	Check the hardware version of the Com module and fit a Com module with the correct hardware version if required.
	SW-TYPE REPLACED	
	The Promass software has been replaced with other software (Promag).	Check the type of software and replace it with the correct type if necessary.
	SW DOWNGRADE NOT POSSIBLE	
	A previous software version has been installed. This is not allowed. The software is not downwards compatible!	Check the software version and replace it with the latest version if necessary.
F: SYSTEM ERROR AMPLIFIER	SW-TYPE INCOMPATIBLE	
	The software of the amplifier and the Com module are not compatible.	Replace the electronics only as electronics module.
	HW-VERSION INCOMPATIBILE	
	The hardware of the amplifier is not compatible with the Com module.	Replace the electronics only as electronics module.
	SW-VERSION INCOMPATIBLE	
	The software versions of the amplifier and the Com module are not compatible.	Replace the electronics only as electronics module.
	HW-TYP INCOMPATIBILE	
	The sensor and the transmitter are incompatible.	Combine the correct sensor and transmitter.

Error status of the measuring system	Cause	Remedial action
Instrument does not operate or there is no	No power supply.	Check power supply and connect.
reading on the display	• Fuse defective.	Check fuse in the wiring compartment and replace if necessary (see fuses Page 31).
No reading on the display but	• Power supply to the Promass is too low.	Connect the correct power supply. Check connection to the display.
measuring pipes oscillate	• Connection to display is faulty.	Replace display unit.
Use mate	Display is defective.	Check the Com module (see Page
	• Com module is defective.	20) and replace electronics or Com module if necessary.
Faulty display and deviations in current output: unexplained response	Fault or noise in the power cable or I/O cables.	Protect cabling from electromagnetic interference, e.g. ground the sensor.
Unstable measurements or measurement error	• Gas bubbles in the system. Identified by deviating excitation current and varying amplitude.	Check application. Increase system pressure.
	 Fluid with high viscosity, especially with large nominal diameters. Damping too large. 	Application unsuitable under these conditions.
	 Zero point poorly adjusted, or zero point error. Indication: The error increases as flow velocity is reduced. 	Carry out the zero point adjustment correctly. The zero point should remain stable when adjustment is carried out a number of times.

Error status of the measuring system	Cause	Remedial action
Zero point is unstable, drifts and cannot be adjusted	 The measuring path is not properly sealed or is leaking creating variations in fluid flow velocity. 	Ensure that the measuring path is sealed correctly and that the fluid is absolutely still.
	Gas pockets in fluid (unstable excitation current).	Increase system pressure. The gas pockets will thus become smaller and therefore will not affect measurement.
	 Solids which have built up or have been released. 	Increase flow velocity if possible.
		Caution! Note abrasive effects!
Incorrect density measurement	 Two-phase fluid with large density difference between carrier fluid and solids. 	Problem cannot be remedied as application limits have been reached. Important: Contact E+H Flowtec concerning information on nominal diameter, measuring range, carrier fluid and solids.
	• Abrasion or corrosion of the measuring pipes: Check oscillation frequency of the measuring pipes (pipes must be clean). The frequency can be read off in the function group SERVICE & ANALYSIS (see Page 27). The original frequency can be obtained from E+H Flowtec by giving the serial number of the instrument.	Replace sensor. Check whether the fluid flow velocity is too high (for abrasion) and, if necessary, increase the nominal diameter with a replacement instrument. Check whether the material of the measuring pipes is suitable for the application.
	• Build-up/caked-on material in the measuring pipes. Check the oscillation frequency with pipes filled with air or water. Compare with the original frequency (±2Hz) for information. The original frequency can be obtained from E+H Flowtec by giving the serial number of the Promass.	Clean measuring pipes or replace sensor.

Alarm messages A:	Cause	Remedial action
A: DAT CONTAINS DEFAULT DATA	Empty DAT in amplifier. The instrument is operating with default data.	Program sensor data (nominal diameter, calibration factor and zero point).
A: EXCIT. CURRENT LIMIT	The maximum excitation current for the excitation coil has been reached. The instrument is continuing to operate correctly.	If the excitation current is no longer sufficient to oscillate the measuring system, then the application conditions are to be changed (air, solids, multiphase fluid, etc.). Increase the system pressure or decrease the amplitude of the mechanical oscillation (see advanced functions on Page 29).
A: SLUG FLOW CONDITIONS	The excitation current varies significantly: Application problem!	Check application (see Page 24).
A: EMPTY PIPE	Application problem:	
	• air in the measuring pipes	Check application and ensure that the measuring pipes are always filled with liquid.
	 density too low (see Page 24). 	Check the density limit in the function group PROCESS PARAMETER
A: FLOW TOO HIGH	Velocity of liquid in measuring pipes > 12.5 m/s. Measuring range of transmitter electronics is exceeded.	Lower the flowrate.
A: ZERO ADJUST NOT POSSIBLE	The static zero point adjustment cannot be carried out or has been interrupted.	Check whether the flowrate velocity = 0 m/s.
A: CURRENT OUTP. OVERFLOW	The actual flowrate is out of range (limited by the scaled Irv and urv).	Adjust the initial and full scale values or the current output assigned for the variable.
A: FREQ. OUTPUT OVERFLOW	The actual flowrate is too large for the full scale value (f _{max} = 163%).	Adjust the initial and full scale values or the frequency output assigned for the variable.

DN 4

300

262

DN 50

665

557

2.5 Checking the amplifier at test points TP5, TP14, TP10 and **TP13**

Connect the Flowjack or simulation board (see Page 22) to the pin strips V1 and V8 of the amplifier and take measurements using an oscilloscope at the points described below. For the Promass 63, the measured values of the test points can also be shown directly on the display or given at any output. The test points can be selected in the function group SERVICE&ANALYSIS on access with service code 4685 (see Page 27).

The test points are set on the connection board of the Flowiack and on the simulation board. A special test point plug is available which can be connected to the appropriate pin strip. This can be plugged directly onto pin strip V8 of the amplifier board. In this case, all test points can be checked while the instrument is operating.

2.5.1 Resonant frequency at TP14 against TP12 (ground) (resonance frequency on display of TP 5)

Medium Resonance frequency in Hz±10 Hz Sensor type M Sensor type A, Sensor type A, Hastelloy C Stainless Steel DN 8 DN 15 DN 25 DN 40 DN 50 DN 80 DN 2 DN 4 DN 2 Air 770 900 950 870 308 850 960 267 267 Water 630 740 680 630 630 690 251 270 250 Sensor type F, SS 1.4539 Sensor type F, Hastelloy C22 DN 25 DN 15 DN 8 DN 25 DN 40 DN 50 DN 8 DN 15 DN 40 Air 590 700 940 770 660 608 712 930 782 Water 540 800 520 600 650 555 621 797 670

With frequency deviations: Material layers or corrosion on the measuring pipes possibly. Clean sensor or replace. The original frequency of the sensor can be obtained from E+H Flowtec by giving the serial number

Check for the chemical resistance of the measuring pipes in this application for corrosion. If possible, increase the flow velocity when material build-up is to be expected (see also Section 2.10 Application).

2.5.2 Measuring pipe oscillation at TP14 against TP12 (ground)

Amplitude	With oscilloscope in Vpp	With voltmeter in Veff
100%	6.0 ±0.20	2.12 ±0.15

Note!

If the amplitude is increased or decreased using advanced functions then the values have to be recalculated as a proportion of the change.

The sensors DN 8F and DN 50F are permanently operated at 150% oscillating amplitude.

With deviations or fluctuations: The electronics are defective or the process conditions are unstable. Solid or gaseous components may be present in the fluid which may lead torregular oscillation of the measuring pipes. Check also the excitation current (see Page 19).The excitation current fluctuates or is at its limit with heterogeneous distribution of solid or gaseous components.

Fig. 2: Assignment of the test point plug

2.5.3 Oscillation amplitude signal at TP10 against TP12 (ground)

Amplitude	Oscillation amplitude signal in Vp				
	Display value with software version 1.00.00	Value with oscilloscope or software version > 1.02.00			
100%	1.62.0	1.84.0			

Note!

If the amplitude is increased or decreased using advanced functions then the values have to be recalculated as a proportion of the change.

The sensors DN 8F and DN 50F are permanetly operated at 150% oscillating amplitude.

With deviations: The electronics are defective. Check also the electrodynamic sensors. If these are OK then replace the electronics.

2.5.4 Excitation current at TP13 against TP12 (ground)

Amplitude	Excitation current in mAeff (Values apply to air or water)				
	Sensor type A DN 2/4	Sensor type M/F DN 8/15/25	Sensor type M/F DN 40/50	Sensor type M DN 80	
100%	<1	<3	<5	<10	

Note!

If the amplitude is increased or decreased using advanced functions then the values have to be recalculated as a proportion of the change. The sensors DN 8F and DN 50F are permanently operated at 150% oscillating amplitude.

Multiply by a factor of 1.41 when calculating peak values.

The excitation current fluctuates strongly: Check the application. Solids or gaseous components may be in the fluid which may lead to irregular oscillation of the measuring pipes. The excitation current depends on application (gas or solid contents).

Max. excitation current:

Sensors type M/F:100 mA_{eff} = 1 V_{eff} or 2,8 V_{pp} at TP13Sensor type A:25 mA_{eff} = 0,25 V_{eff} or 0,7 V_{pp} at TP13

Calculation of the excitation current: $E_{rr(mA_{eff})} = (TP13 \times V_{pp}) / 10$

2.6 Checking the Promass 63 Com module (HART, RS 485, current)

The function of the communication module and the amplifier board can be checked with a twochannel oscilloscope. The terminals of the oscilloscope are connected to the V8 pin strip of the amplifier board (see Fig. 15 and 16 on Pages 34 and 35). See Fig. 3, test point plug. The test point plug can be pluged to the connection board of the Flowjack or to the simulation board.

Channel 1 of the oscilloscope is connected to TXD and Channel 2 to RXD (against ground TP 12).

Fig. 3: Test point plug

Normal operating mode

Figure 4 shows the signals of the amplifier and the communication module when operating normally. Channel TXD shows the transmission of the measured value from the amplifier to the communication module. Channel RXD shows acknowledgement of the communication module of the incoming value. This sequence is cyclical and repeats itself e.g. every 20 ms (independent of the frequency of the measuring pipe oscillation).

Fig. 4: Amplifier and communication module signals in normal operation

Defective communication module

If the F: SYSTEM FAILURE AMPLIFIER error occurs with the diagnosis NO DATA RECEIVED, then there may be a fault in the communication module. In this case, no signal is available from the incoming channel RXD of the amplifier as shown in Fig. 5. The amplifier again attempts to create a connection with the communication module which results in a periodic signal of max. 100 Hz at TXD.

Fig. 5: Signals with defective communications module

Defective amplifier board

If the F: SYSTEM FAILURE AMPLIFIER error message occurs with the diagnosis NO DATA RECEIVED, then the amplifier may be faulty. In this case there is no signal on the transmitting channel TXD (Fig. 6). The communication module again attempts to create a connection with the amplifier which results in a periodic signal of max. 100 Hz at RXD.

Fig. 6: Signals with faulty amplifier

2.7 Checking other systems using simulation of current and frequency output of Promass 63

Checking the electronics of other systems connected can be carried out by simulating the signals of the current output or the signals of the frequency output. The functioning of the simulation mode does not mean full functionality of the Promass electronics.

The simulation function of the current and frequency output is activated in the function groups CURRENT OUTPUT or PULSE/FREQ. OUTPUT. The desired values are also set in these function groups.

2.8 Connections and functions of the Flowjack flow simulator and simulation board

Sensor signals are simulated using the Flowjack or the simulation board. The Flowjack and simulation board are connected to the amplifier board of the Promass 60/63 over two pin strips, V8 and V1 (see Fig. 7). The sensor coil connection board must first be removed from the pin strip V1.

Fig. 7: Connection of the Flowjack and simulation board

2.8.1 Simulation board for checking the amplifier

The simulation board allows the amplifier and communications board to be easily checked. The simulation board also provides access to all test points. The board is connected to pin strip V1 and V8 of the amplifier (see Fig. 7). The sensor coil connection board has already been removed from pin strip V1.

The sensor is simulated and the circuit on the amplifier is checked using the simulation board. This board supplies the following values to the measuring electronics:

Coriolis free	quency:	sensor M/F: appr. 600 Hz; sensor A: appr. 300 Hz
Temperature:		25.7 °C
Switch S1	position 2	: flow according to adjustment
	position 2	: no flow
Switch S2	2 position 1: sensor type A	
	position 2: sensor type M/F	

Fig. 8: Layout of the simulation board

Check the frequency of the Promass 63 on the display in the function group SERVICE&ANALYSIS (see Page 27).

Check all test points of the Promass 60 with an oscilloscope or a voltmeter (see Sect. 2.5). The transmitter electronics are OK if the electronics are operating correctly with the simulation board. Finally check the sensors (electrodynamic sensors, temperature sensors and excitation coil, see Sect. 2.9). If the Promass electronics are not operating correctly with the simulation board, then replace the electronics.

2.9 Checking the sensor

The following points can be checked on the sensor:

- electrodynamic sensors
- excitation coils
- temperature sensors.

When checking, resistances are measured with an ohmmeter. This is connected to the connection board of the electrodynamic sensors/temperature sensors or at the plug of the excitation coil (see Fig. 9).

Fig. 9: Plug of the excitation coils, connection board for electrodynamic sensors and temperature sensors

2.9.1 Resistance of electrodynamic sensors

The resistance is measured at the plug or at the cables of the connection board. There are four induction coils in the sensor aselectrodynamic sensors. One electrodynamic sensor consists of two induction coils connected in series.

Sensor 1 (inlet side): measure PIN 3 (green cable) against PIN 2 ground (screen).

Sensor 2 (outlet side): measure PIN 1 (blue cable) against PIN 2 ground (screen).

Sensor type, nominal diameter	Resistance of the electrodynamic sensors
type M, DN 850	104 Ω \pm 5 Ω at 20 °C (\pm 2%/5 °C temperature change)
type M, DN 80	52 Ω \pm 5 Ω at 20 °C (\pm 2%/5 °C temperature change)
type F, DN 850 type A, DN 2/4	76 Ω \pm 5 Ω at 20 °C (\pm 2%/5 °C temperature change)
	262 Ω ±5 Ω at 20 °C (±2%/5 °C temperature change)

The flowmeter must be replaced if one of theelectrodynamic sensors is defective.

2.9.2 Resistance of the excitation coil

To check the excitation coil resistance, an ohmmeter is connected to the plug of the excitation coil (see Fig. 9). Connect between the white wire and the screen (ground).

Sensor type, nominal diameter	Resistance (±5 Ω at 20 °C)
type A, DN 2/4	240 Ω (±2%/5 °C temperature change)
type M, DN 8/15	172 Ω (104 + 68* Ω) (±2%/5 °C temperature change)
type M, DN 25/40	57 Ω (±2%/5 °C temperature change)
type M, DN 50/80	40 Ω (±2%/5 °C temperature change)
type F, DN 8/15	118 Ω (36 + 82* Ω) (±2%/5 °C temperature change)
type F, DN 25/40	20 Ω (±2%/5 °C temperature change)
type F, DN 50	27 Ω (±2%/5 °C temperature change)

additional Ex resistance

If the excitation coils are defective (short or open circuit), then the flowmeter must be replaced.

2.9.3 Resistance of temperature sensors

The resistance of the temperature sensors (PT 1000) are measured using an ohmmeter connected to the plug of the connection board of theelectrodynamic sensors/temperature sensors or the cables (see Fig. 9).

PT 1000 containment vessel:

PIN 7 (white cable) against PIN 5 ground (screen): 1077 Ω at 20 °C (±3.85 Ω /°C temperature change)

PT 1000 measuring pipes:

PIN 6 (red cable) against PIN 5 ground (screen): 1077Ω at 20 °C (±3.85 Ω/°C temperature change)

The flowmeter must be replaced if one of the temperature sensors is defective.

Operation on a makeshift basis is still possible by soldering a reference resistor instead of the defective PT 1000. The reference resistor is calculated according to the temperature of the fluid (107 Ω at 20 °C ±3.85 Ω /°C temperature increase or decrease). The measuring error remains low if the fluid remains at constant temperature.

2.10 Checking the application

The following factors can cause problems in an application:

System pressure:

The minimum pressure for the measuring system is the vapour pressure of the liquid plus the atmospheric pressure. Measuring errors may occur below this pressure or the system may not operate. Note the position of the outlet.

Gaseous content in the fluid:

Gas in the fluid increases the measuring error drastically. This should therefore be avoided. Gas content is detected by irregular oscillation of the measuring pipes (TP14). Remedial action: Increasing the pressure in the system can solve the problem. Gas separators are required if there is no stable oscillation of the measuring pipes.

Solids in the fluid:

Solids must be well mixed with the carrier fluid, i.e. the fluid must be homogeneous. If this is not the case, then measuring errors will occur. Abrasion caused by solids may occur.

Multiphase fluid:

If a fluid consists of a number of phases, e.g. liquid/liquid/solid, correct measurement is only possible if the fluid is homogeneous. If this is not the case, measuring errors will occur. Those fluids in which gases are also present create special problems. Such applications are at the measuring limits of the system.

Viscosity:

High viscosity fluids often contain gases which may lead to problems. Highly viscous fluids strongly dampen the oscillation of the measuring pipes (sensor type A: consider pressure loss)

Remedial action: Carry out zero point adjustment under process conditions (pressure and temperature). Non-Newtonian liquids have viscosities which change depending on the pressure and velocity of the fluid. In this case, a dynamic zero point adjustment must be carried out. (Sensor type A: calculation of pressure loss see operating manual Sect.Techn. Data)

Temperature changes:

Zero point drift is possible if a highly viscous fluid is also present.

Corrosion of the measuring pipes:

Check for corrosion (TP 14) by frequency. Check the chemical compatibility of the measuring pipes in this application.

Remedial action: Change material of measuring pipes.

Build up on the measuring pipe walls:

Check for build-up on the measuring pipe walls by frequency (TP 14). Remedial action: Increase the flow velocity (smaller nominal diameter).

Abrasion of the measuring pipes:

Check for abrasion by frequency (TP 14). Remedial action: Lower the flow velocity (larger nominal diameter). Density can be measured in a bypass.

Filling applications

Reciprocating pumps and quick acting valves which are directly flanged to the sensor may significantly affect the repeatability of the measurement by the "hammer" blows they create. Remedial action: Carry out mechanicaldecoupling by "silent-blocks" or thick rubber gaskets.

Reciprocating and diaphragm pumps:

Reciprocating and diaphragm pumps cause rapid flow pulsation. The fluid must therefore be free of gas as the variation in pressure cannot be determined by the instrument.

Remedial action: Reprogram the full scale value and increase it by a factor π of the average value of the mass flow. Use a gas separator if necessary .

Note!

In such applications do not measure with an automatic integration time but with a pre-programmed integration time which is fixed. Reprogram in the function group SERVICE&ANALYSIS.

2.11 Service-Tools Promass 63

The function groups SENSOR DATA and SERVICE&ANALYSIS are also available to assist troubleshooting for the Promass 63.

Data are found in these function groups via the operating matrix.

The data in the SENSOR DATA function group can always be read off and can also be edited once the service code "4685" has been entered. Access to the SERVICE&ANALYSIS function group is only possible after the service code has been entered.

2.11.1 Function group SENSOR DATA

Function: K-FACTOR

The K-factor can be edited after the service code no. has been entered (no help function available).

DN	calibration factor sensor type M	calibration factor sensor type F SS 1.4539	calibration factor sensor type F Hastelloy C22	calibration factor sensor type A
2	-	-	-	0.64
4	-	-	-	0.49
8	1.9	3.1	3.17	-
15	1.3	2.1	2.21	-
25	1.2	2.4	2.65	-
40	0.9	2.0	2.20	-
50	1.5	2.2	2.29	-
80	1.5	-	-	-

Function: ZERO POINT (PIPE ZERO)

The zero point can always be edited. The help function indicates whether zero point 1 or zero point 2 is active.

Function: NOMINAL DIAMETER

Nominal diameter can be edited once the service code has been entered.

Function: SENSOR COEFF.

With this function a part of the DAT memory can be read and edited. Moving into the editing field SENSOR COEFFICIENT VALUES and back is by using the ENTER key. The following parameters can be edited:

- Density coefficients: C₀...C₃
- Temperature coefficients: K_M, K_T

DN	Sensor	type M	Sensor SS 1.			r type F oy C22	Sensor	type A
	KM	КТ	KM	KT	KM	KT	KM	КT
2	-	-	-	-	-	-	400	0
4	-	-	-	-	-	-	400	0
8	1609	-1186	400	0	270	0	-	-
15	1331	-912	400	0	270	0	-	-
25	982	-460	400	0	270	0	-	-
40	968	-363	400	0	270	0	-	-
50	852	-276	400	0	270	0	-	-
80	852	-276	-	-	-	-	-	-

• The highest and lowest measured temperatures of the sensor (read only): T_{min}, T_{max}

Function: SERIAL NUMBER

The serial number can be read in this field.

Function: SW VERSION

The software version of the amplifier can be read in this field.

Function: DAT active/inactive

The DAT can be made active or inactive in this field (not available at present).

2.11.2 Function group SERVICE & ANALYSIS

Function: SEL. TESTPOINT

The test points of the amplifier can be selected in the field SELECTION TESTPOINT. The signal of the test point selected is given in the field VALUES TESTPOINT. The appropriate measured value can be displayed by using the help key (pressing the "+" and "-" keys simultaneously) or by using the ENTER KEY.

The values of the test points can be indicated on the display or via the current or frequency output as required. If a test point is selected, then an additional configuration is shown in the appropriate function field (e.g. the selection parameter TESTPOINT is also shown in the field ASSIGNMENT OUTPUT in the function group CURRENT OUTPUT in order to supply the particular test point signal to the current output (see example at end of this section).

The following test points are available:

• OFF: Test point selection is ended with this option.

Note!

If the test point signal is no longer required then always switch to OFF to maximise the computing capacity of the instrument.

- TP5 OSC. FREQ.: The oscillation frequency of the measuring tubes can be read at Test point 5.
- TP10 AMPL. VALUE: Test point 10 again provides the signal of the measurement amplitude. (see Sect. 2.5.3 for values).

- **TP13 EXC. CURRENT:** The effective excitation current can be read off at Test point 13. The maximum excitation current is 100mA_{eff} for the sensors type M/F (see Sect. 2.5.4 for excitation current values for air and water).
- TP14 OSC. AMPL.: The oscillating amplitude can be read off at Test point 14. With an amplitude of 100%, the value is 6.0 V_{pp} (other values given in Sect. 2.5.2).
- CANCEL: Leaving the cell.

Example 1: The oscillation frequency of the measuring tubes from TP5 is assigned to the current output.

Procedure:

- 1. The Coriolis signal OSCILL. FREQ. is selected in function SEL. TESTPOINT in the function group SERVICE&ANALYSIS.
- 2. The TESTPOINT is selected in function ASSIGNMENT OUTPUT in the function group CURRENT OUTPUT.
- The frequency is then set in function INITIAL VALUE 1 which should correspond to 0 or 4nA. For example 0 Hz = 4 mA (or 600 Hz = 4 mA, if frequency variations in a small range are to be observed).
 The frequency is set in function FULL SCALE VALUE 1 which should correspond to 20 mA. For example, 1000 Hz.
- 4. The Coriolis signal is now available at the current output.
- 5. After tests, assign the original function to the current output.

Example 2: The oscillation frequency of the measuring tubes from TP5 is assigned to pulse/frequency output.

Procedure:

- 1. The Coriolis signal TP5 OSCILL. FREQ is selected in function SEL. TESTPOINT in function group SERVICE&ANALYSIS.
- 2. The TESTPOINT is selected in function ASSIGNMENT OUTPUT in the function group PULSE/FREQ. OUTPUT.
- 3. Values are set in functions FULL SCALE FREQUENCY and FULL SCALE VALUE in which the ratio of the signal is to be given. If FULL SCALE VALUE and FULL SCALE FREQUENCY are both set to 1000 Hz, then the Coriolis signal 1:1 will be given at the output.
- 4. The Coriolis signal is now available at the pulse/frequency output.
- 5. After tests, assign the original function to the pulse/frequency output.

Function: ADVANCED FUNCTIONS

This function offers a number of programming modes which may be useful to enable the system to operate in special applications.

The ENTER key can be used to toggle between the function selection and the programming. Note!

The default values are marked in bold letters.

- CANCEL: This ends the function ADVANCED FUNCTIONS
- INTEGRATION TIME: Options: AUTOMATIC, 1, 2, 4, 8, 16 integration time periods (number of oscillations over which the measured value is integrated).
 The setting AUTOMATIC should not be selected with applications using reciprocal pumps or other strongly pulsating flows. In such cases, a fixed integration time period should be selected.
- AMPLITUDE FILTER: Options: OFF; WEAK, AVERAGE, STRONG. This function determines over how many measurements it is to be averaged. Application: strongly fluctuating output signals can be somewhat smoothed out.
- SELF-ANALYSIS: Options: OFF, CYCLICAL, SMART. This analysis mode measures the oscillation amplitude and determines a reference signal for calculating the mass flowrate. Note!

OFF should never be selected, SMART only for short-time measurements.

- **OSC. AMPLITUDE:** Options: 50%, 75%, **100%**, 150%. The oscillation amplitude is the mechanical amplitude of the measuring pipe oscillation. This function enables the oscillation to be decreased with difficult applications if the excitation current is already at its limit. Measurement is still possible under certain circumstances with a decreased amplitude. Application: with very high fluid dampening.
- FREQ. WINDOW: Options: ACTIVE, INACTIVE. This function allows the frequency window of the PLL to be switched on or off. If the frequency window is switched on and the defined frequency window of the measuring pipe oscillation is left, then oscillation is restarted. If the resonance frequency cannot be found, then the measuring system will restart with an automatic reset.
- **TEMP. DISPLAY:** Options: CONTAINMENT TUBE, **MEASURING PIPE**. This function enables the temperature of the measuring pipes or the containment tube to be displayed at the outputs. The temperature indication only affects the display unit and the current output.
- PICK-UP CHECK: Options ACTIVE, INACTIVE.
 Sensor monitoring can be switched on or off by means of the error message ELECTRODYN. SENSOR.
- MEDIUM MONITORING: Options: ACTIVE, INACTIVE.
 If the fluid is highly heterogeneous, then the alarm message A: MEDIUM HETEROGENEOUS appears. This message can be switched off by selecting INACTIVE.
- EXCIT. CURRENT OVERFLOW: Options: ACTIVE, INACTIVE. If the excitation current is dampened to a maximum in an application, then the alarm message A: EXCITATION CURRENT AT LIMIT is given. This message can be switched off by selecting INACTIVE.
- ERROR BEHAVIOUR: Options: OFF; WEAK, AVERAGE, STRONG. This fuinction determines the response time of an alarm and of the alarm relay. OFF: Alarm and relay are inmediately active. WEAK: Response time of 4 seconds. AVERAGE: Response time of 8 seconds. STRONG: Response time of 16 seconds.

2.12 Using the service software Prospy

Using the service software Prospy is recommended when dealing with Promass 60 and the blind Promass versions.

The Prospy data cable should be connected at pin strip V8 (see Fig. 7 on Page 2). Via the Prospy interface box the Promass can communicate with the PC.

The following functions are available:

- Download: Downloading the complete program configuration of the Promass into the PC.
- Storing the configuration in the PC.
- Modifying the programming in the PC.
- Upload: Restore changed or modified data from PC to the Promass.

Fig. 10: Using the service software Prospy

3. Electrical Data

3.1 Connection diagram for remote version

3.2 Cable specifications

- 6 x 0,38 mm² PVC cable with common screen and each wire screened
- Resistance: ≤50 Ω/km
- Capacity wire/screen:≤420 pF/m ±2%
- Permanent operating temperature:-25...+90 °C

Note !

The remote version will be delivered with a cable (10 m) installed at the sensor.

3.3 Fuse ratings of power supply

	Power supply 85260 VAC	Power supply 2055 VAC Power supply 1662 VDC
Promass 60/63	1 A slow blow	2 A slow blow
Promass 60/63 Ex	1 A slow blow	2 A slow blow

Fig. 11:

Electrical connection of remote version

4. Repair and service

4.1 Replacing the electronic boards of the Promass 60

Warning!

- Danger from electric shock! Switch off the power supply before unscrewing the cover to the electronic compartment of the transmitter housing. Befor opening Ex devices wait ten minutes after switching off the power supply.
- When replacing boards, ensure that the markings are identical (Part-No.). Exchange Ex modules only
 against Ex modules.
- Local power voltages and frequencies must agree with the technical specifications for the power supply board used.
- Electronic boards of Promass types M/F are different from type A boards.

Procedure:

- 1 Switch off the power supply.
- 2 Loosen the locking clamp (3 mm Allen screw).
- 3 Unscrew the cover to the electronic compartment.
- 4 Remove the local display/display unit (if present).
 - a) Loosen the mounting screws.
 - b) Remove the ribbon cable from the
 - amplifier board.
- 5 Remove the two-pole plug of the connecting cable by simultaneously pressing the locking unit of the power supply board.
- 6 Also remove the cable board of the shielded electrode signal cable from the amplifier board, including the DAT module.
- 7 Loosen the two Phillips screws of the board support. Carefully remove the support approx. 4 - 5 cm out of the transmitter housing.
- 8 Remove the excitation current cable plug from the power supply board.
- 9 Also remove the plug of the ribbon cable (connecting the terminal compartment) from the amplifier board.
- 10 The complete transmitter electronic unit can now be removed from the housing together with the board support.
- 11 Replace the old electronic module with a new one.
- 12 Reassemble in reverse sequence.

Fig. 12: Replacing the electronic module of the Promass 60

4.2 Replacing the electronic boards of the Promass 63

Warning!

- Danger from electric shock! Switch off the power supply before unscrewing the cover to the electronic compartment of the transmitter housing. Befor opening Ex devices wait ten minutes after switching off the power supply.
- When replacing boards, ensure that the markings are identical (Part-No.). Exchange Ex modules only
 against Ex modules.
- Local power voltages and frequencies must agree with the technical specifications for the power supply board.
- Electronic boards of Promass types M/F are different from type A boards.

Procedure:

4

- 1 Switch off the power supply.
- 2 Loosen the locking clamp (3 mm Allen screw).
- 3 Unscrew the cover to the electronics compartment.
 - Remove the local keypad/display (if present).
 - a) Loosen the mounting screws.
 - b) Remove the ribbon cable from the communication board.
- 5 Remove the two-pole plug of the connecting cable by simultaneously pressing the locking unit of the power supply board.
- 6 Also remove the cable board of the shielded electrode signal cable from the amplifier board, including the DAT module.
- 7 Loosen the two Phillips screws of the board support. Carefully remove the support approx. 4 - 5 cm out of the transmitter housing.
- 8 Remove the excitation current cable plug from the power supply board.
- 9 Also remove the plug of the ribbon cable (connecting the terminal compartment) from the communication board.
- 10 The complete transmitter electronic unit can now be removed from the housing together with the board support.
- 11 Replace the old electronic module with a new one.
- 12 Reassemble in reverse order.

4.3 Design of the electronic boards

Power supply board Promass 60 and Promass 63

Fig. 14

Amplifier board Promass 60

Fig. 15

Amplifier board Promass 63

Fig. 16

Communication module HART[®] Promass 63 (RS 485 and current boards similar)

Fig. 17

4.4 Block diagram of the Promass electronics

Fig. 18 Block diagram of Promass electronics
Description of the block diagram

Block 1:

Block 1 is responsible for creating the oscillation. In thePromass a sine wave signal which is produced by a VCO is used to create the oscillation. A total sum of sensor amplitudes is produced using an integrator and then used for controlling the sensor amplitudes and frequency.

Block 2:

Block 2 is the actual measuring path. TheCoriolis signal is the result of subtracting the sensor amplitudes in the SC filter, the synchronous rectifier and analogue/digital converter. A reference signal ϕ) is picked up by Sensor signal 1 at 2-second intervals (analysis). The time delay t = /) is found using the oscillating frequency (ω).

Block 3:

Block 3 controls the amplitude of the oscillation. The amplitudes are controlled by the Auto Gain Control and a synchronous rectifier so that the amplitudes of the voltage are identical at the amplifier output.

Block 4:

Block 4 is the digital control of the entire system (timing). All cycles and signals required for measurement are created here (measurement, analysis, amplitude control and the production and maintenance of the oscillation).

Temperature measurement:

The block for temperature measurement measures the temperature of the measuring and containment pipes. The temperature is converted by a VFC into a frequency and then passed on to the microprocessor.

Power supply:

The power supply supplies power to the amplifier (and Com module) at the required voltage.

DAT:

The DAT contains all sensor data.

DIP switches:

The Promass 60 is programmed using DIP (miniature) switches Promass 63 via display connected to the Com module).

Pulse/Status:

This is the pulse and status output of the Promass 60.

Com module:

This block is used as the interface to the Com module Promass 63 only).

4.5 Updating the electronics from Promass 60 to Promass 63

The following components are required for upgrading:

С	omponent	Order No.
•	Electronics module (power supply/amplifier board and Com module)	
•	Display module Promass 63 (if blind version not required)	see Page 46
•	Electronics compartment coverPromass 63 (if blind version not required)	
•	Service labels (see Page 45)	

Dismantle the entire Promass 60 electronics (see Page 32) and replace them with the appropriate components of the Promass 63. Ensure that the power supply board has the same voltage. Fill out the service lable and fix it to the housing.

Caution!

Caution

The original DAT module of the instrument must be used as it is part of the sensor!

4.6 Changing the power supply variants

The following components are required for changing the power supply:

Co	omponent	Order No.
•	Electronics module (power supply and amplifier, also Com module for Promass 63, the correct power supply board variant) Filter board	see Page 46
	Caution! Ensure that the power supply board and the filter board have the same voltage.	
•	Service lable (see Page 45)	

Dismantle the entire Promass electronics (see Page 32/33) and replace them with the appropriate new components. Ensure that the power supply board has the correct voltage. Fill out the service able and fix it to the housing.

Caution

Caution!

The original DAT module of the instrument must be used as it is part of the sensor!

4.7 Electromagnetic compatibility EMC/RFI

The Promass measuring system is protected against electromagnetic interference fields and fulfils the EN 50081 part 1, EN 50082 part 1 standards and NAMUR recommendations. However, should problems arise in the direct vicinity of frequency converters, phase controllers or other sources of strong electromagnetic radiation (radio waves, microwaves, X-rays, etc.), then the following procedures should be carried out:

- In order to take full advantage of the electromagnetic compatibility of the Promass measuring system, it is recommended that the transmitter housing is connected to ground (see Fig. 19). A 6 mm² copper cable should be used. The connection can be via a flange or an existing potential equalisation system.
- Where the remote version is used, ensure that the connection cable does not lie in the same cable tray with other cables which are connected to or which supply power to the meter.

Fig. 19: Potential equalisation in areas with strong electrical interference

4.8 Operating overview for Promass 60

The instrument parameters of the Promass 60 can be set using the miniature switches. These are found on the amplifier board (see Fig. 15). The cover to the electronics compartment must be removed to set the switches.

Warning!

Switch off the power supply before opening the cover to the electronics compartment.

Fig. 20: Setting the miniature switches for the various functions of the Promass 60

4.9 Local display for Promass 60

With the Promass 60 local display the following parameters can be read off directly at the measuring point:

- Flow rate and/or totaliser value
- Technical units (SI/US units)
- Process conditions (creep rate, flow velocity)
- System errors

Selecting and activating various functions may be done using the three operating keys. These are accessible by unscrewing the cover of the electronics compartment. The keys are moved using a thin rod. Switching takes approx. 0.5...0.8 seconds.

The following operations are carried out within the • function using this key:

- Selecting technical units
- Starting zero point calibration
- Input of values (-)

Alternating display: flow <=>totaliser

Number of overflows of the totaliser

• Static zero point adjustment

display

• Enter zero point value for test function to check the display elements

Fig. 21: Local display Promass 60

4.10 Operating overview for Promass 63

Operation of the Promass 63 transmitter is carried out using three optical keypads.

Fig. 22: Display Promass 63 and operating elements

Selecting the individual function groups and functions within the E+H programming matrix is done by using the operating keys in sequence. The diagnostic function is activated by simultaneously pressing the +/- keys.

Fig. 23: Selection of functions within the operating matrix

			N CALIBRATION NOMINAL CURRENT 1 20 mA 3 CURRENT				Ial EXP.COEF. (3) TARGET						ented)
		NOM. DIAM.E UNIT	CALIBRATION CURRENT 1 mA				TARGET Material DENSITY						at yet implem
		TEMPERATURE					EXP. COEF. (3) CAPRIER						 Access with service code "465" only Access with service code "465" only Matrix position appears only when DAT is delective (not yet implemented)
		STD. DENSITY UNIT	FAIL SAFE MODE				CARRIER				SYSTEM RESEI		 4685 only hen DAT
		DENSITY	CURRENT SPAN 3	FAILSAFE MODE		BAT. CYCLES	FIXED STD DENSITY				SOFTW. VERS. COM MODUL		 Access with service code "4685" only Matrix position appears only when DA
(B)	ASSIGN TOTAL 1 ASSIGN TOTAL 2	STD. VOLUME	ACTIVE RANGE TIME CONSTANT CURRENT SPAN (3) (3)			BATCH CYCLES	EXP COEF			SELF CHECKING	PREVIOUS SYSTEM CONDITIONS	SOFTWARE VERSION AMPLIFIER	 Access wit Matrix posi
	ASSIGN TOTAL 1	STDVOL. FLOW	ACTIVE RANGE 3	FULL SCALE 3	RELAY 2 OFF-VALUE	MAX. BATCH TIME	L REFERENCE		SYSTEM CONFIG.	DENSITY FILTER	PRESENT SYSTEM CONDITION	SERIAL NUMBER	
®	TOTALIZER	GALLONS/ BARREL	FULL SCALE 2	FULL SCALE FREQUENCY	RELAY 2 3 ON-VALUE	BATCHING	STD. VOL. CALC	LANGUAGE	TAG NUMBER	EPD	ACCESS CODE		
	TOTALIZER 2 OVERFLOW	VOLUME UNIT	DUAL RANGE 0 MODE	PULSE WIDTH	RELAY 2 FUNCTION	COMPENSATION (3) QUANTITY	VOLUME FLOW	LCD CONTRAST	PULSE WIDTH	FLOW	BEFINITION BRIVATE CODE		ADV. FUNCT. VALUES
B FLOW	TOTALIZER 2	VOL. FLOW	EULL SCALE 1	PULSE VALUE	BELAY 1	BATCH BREWARN	CALC. DENSITY	DISPLAY DAMPING		MEASURING MODE	POSITIVE ZERO RETURN		
	TOTALIZER 1 OVERFLOW	MASS UNIT	2ERO SCALE		RELAY 1 BON-VALUE	BATCH PRESET	DENSITY	ASSIGN LINE 2	BUS ADRESS	NDISE SUPPRESSION			TEST PO INT SIGN A L
	TOTALIZER 1	MASSFLOW	ASSIGN OUTPUT	ASSIGN OUTPUT	RELAY 1 FUNCTION	BATCH VARIABLE	DENSITY ADJ. VALUET	ASSIGN LINE 1	PROTOCOL	LOW FLOW CUTDFF	SELECT ZEROPOINT	+ K-FACTOR	ASSIGN
			Î				Ţ.			1			
	TOTALIZERS	SYSTEM-UNITS	CURRENT OUTPUT 1/2	PULS/FREQ.OUTPUT	Relays	BATCHING	DENSITY FUNCTION	DISPLAY	COMMUNICATION	PROCESSING PARAMETER	SYSTEM Para metef	SENSOR DATA	SERVICE&ANALYSIS

4.11 Programming matrix Promass 63

Fig. 24: Programming matrix Promass 63

4.12 Zero point adjustment

- A static zero point adjustment is carried out with single phase fluid without gas or solid content. The
 measuring pipes must be completely filled and the fluid must be completely still. The result is more
 accurate if the adjustment is done under operating conditions (pressure, temperature).
- A dynamic zero point adjustment is carried out with heterogeneous fluid.

4.12.1 Static zero point adjustment

Procedure:

- 1. Run the plant for as long as necessary until it is operating normally.
- 2. Stop the flow.
- 3. Check the shut off valves (for leaks, etc.). Also check the operating pressure.
- 4. Carry out zero point adjustment:
 - a) Promass 60:

Select the DISPLAY FUNCTION0.-AdJUST on the display and confirm with

SET key.

Adjust using the auxiliary input (Switch No. 11 to OFF). The jumper on the local display must be plugged on the left side (see Page 39).

Apply a 3...30 V DC/AC voltage to the auxiliary input (Terminal 24/25). Zero point adjustment has now been carried out.

Note!

The **adjustment** can also be carried out by connecting amultimeter set to "Diode test" to the auxiliary input.

b) Promass 63: via the display in the SYSTEM PARAMETER function group.

4.12.2 Dynamic zero point adjustment

Note!

Check that any measuring errors present do not originally come from the plant itself e.g. due to a slow acting valve.

Dynamic zero point adjustment can only be carried out with a local display Promass 60) or display unit (Promass 63) or for blind versions by use of the service softwareProspy.

Procedure:

- 1. Run the plant for as long as is necessary until it is operating normally.
- 2. Determine the new zero point value using weigh scales and calculate the measuring error.
- 3. Use the largest possible vessel available filled with the fluid.
- 4. Note the mass flowrate mact during the filling procedure, e.g. in kg/h.
- 5. Note the mass shown by the Promass measuring system Δm_{act} (totalizer value).
- 6. Determine the mass Δm_{tqt} using weigh scales.

the

7. Calculate the measuring error as follows:

$$=\frac{\Delta m_{act}-\Delta m_{tgt}}{\Delta m_{tgt}}$$

- 8. Read off from the display the actual zero point value PIPQ_{old}.
- 9. The new zero point is calculated as follows:

 $PIPO_{new} = PIPO_{old} + (F\% \bullet 100 \bullet m_{act}/m_{ref}^{\bullet})$

 \dot{m}_{ref} = Reference flow as function of the nominal diameter (DN); corresponding to v = 1 m/s at ρ = 1 kg/dm³. Values are given in the table on the right.

DN	m [*] ref
8	181 kg/h
15	636 kg/h
25	1767 kg/h
40	2895 kg/h
50	7069 kg/h

10. Enter the value for $\ensuremath{\mathsf{PIPO}_{new}}$ using the local display or the display unit.

Example:

Nominal diameter: Measuring error F:	DN 25 -1.3%
m _{act} :	2300 kg/h (mass flowrate)
PIPO _{old} :	+283
PIPO _{new} :	+283 + (-1.3 • 100 • 2300/1767) = +283 + (-169) = +114

Note! Take note of the arithmetical sign.

4.13 Service labels

Order Code:		sw	version:		Service date:
Ser No.		HW -	version:		
Pulse quantity: _	Ful	l scale value:	DIP switch configurat	on:	
Mass flow: □	kg []t []lb	kg/hlb/min 	Pulse Curre	0N 0FF 5612	
_			SW version:	Service	
_			SW version: SW version COM <u>:</u>	Service	
Order Code: Ser. No.:			SW version COM	Service	o date: CO CO So So So So So So So So So So So So So
Ser.No.:			SW version COM	Service	

Fig. 25: Service labels for Promass 60/63

4.14 Exploded diagram and spare parts list for Promass 60/63

Fig. 26: Exploded diagramm and spare part numbers of Promass 60/63

Spare parts list Promass 60/33

Elec	ctronic module		Order No.
A	Electronic modules Promass 60/63	see spare	
1	Data storage DAT Promass		50068148
Jier	EPROM CMOS 27C010 not programmed		50040559
13			
3	Display module Promass 60		50066323
3	Display module Promass 60 Volume		50079073
3	Display module Promass 63		50066324
ilte	er board		
			50073296
	Filter board Promass 2055V AC, 1662 V DC		50073295
;	Filter board Promass 85260V AC		50069615
	Filter board Promass 2055V AC, 1662 V DC, Ex		50069614
) `on	Filter board Promass 85260V AC, Ex		00000014
,01			
)	Connection board Promass		50058490
lou	ising		
	Housing Promass 2055V AC, 1662V DC		50059315
	Housing Promass 85260V AC		50059314
	Housing Promass E+H blue		50057255
	Fuse 250 V AC T 2A50		50049263
	Fuse 250 V AC T 1A00		50017757
	Fuse cover		50060722
	Cable conduit plate Promass		50058488
	Strain release unit Promass PMF		50056331
	Locking clamp		50058913
	Cable gland PG 13.5		50020709
	Cable gland PG 13.5/M20 x 1,5		50049195
	Cable gland PG 13.5/NPT 1/2"		50049194
	Cable gland PG 13.5/G 1/2"		50064460
	Cover Promass display module		50059361
0	Cover Promass for blind version		50056514
1	Cover Promass terminal compartment		50056517
2	O-Ring 113.90 x 3.53		50059096
3 m	Sealing plugs for PG 11/13.5	1 50 Units	50049055
01110			
4	Flat-headed screw KA25 x 10	50 units	50020017
5	Fillister head screw M3 x 8		50043383
6	Fillister head screw M3 x 8		50058679
7	Fillister head screw M4 x 12		50041698
9	Cylindrical Allen screw M4 x 16		50017388
1	Spring washer M4		50017361
2	Ground wire terminal		50022738
3	Ground terminal		50017499
4 or:	Spring washer 1.25 x 10 x 20		50069599
er'	vice parts		
	Serviceplate Promass 60		50069007
	Serviceplate Promass 63 display version		50062094
	Simulation board		50068805
	Test point plug		50068803
	Prospy		50077720

① Access with service code "4685" only
(2) Matrix position appears only when DAT is defective (not yet implemented)
③ Matrix positions appear only with the corresponding configuration

SYSTEM PARAMETER	SELECT ZEROPOINT	ZEROPOINT ADJUST	POSITIVE ZERO RETURN	DEFINITION PRIVATE CODE	ACCESS CODE	PRESENT SYSTEM CONDITION	PREVIOUS SYSTEM CONDITIONS	SOFTW. VERS. COM MODUL	SYSTEM RESET	DAT ACTIV/INACTIVE
SENSOR DATA	K-FACTOR	ZEROPOINT		SENSOR COEFFICIENT	SENSOR COEFFICIENT 1 VALUES	SERIAL NUMBER	SOFTWARE VERSION AMPLIFIER			
$ \stackrel{\text{SERVICE&ANALYSIS}}{\textcircled{1}} \rightarrow $	ASSIGN TESTPOINT	TESTPOINT SIGNAL	ADVANCED FUNCTIONS	ADV. FUNCT. VALUES			 Matrix posi 	• •	only when DAT	is defective (not y rresponding conf

PROCESSING PARAMETER	→	LOW FLOW CUTOFF	NOISE SUPPRESSION	MEASURING MODE	FLOW DIRECTION	EPD THRESHOLD	DENSITY FILTER	SELF CHECKING

COMMUNICATION	 PROTOCOL	BUS ADRESS	ASSIGN AUX. INPUT	START PULSE WIDTH	TAG NUMBER	SYSTEM CONFIG.

DISPLAY	DISPLAY DAMPING	LCD CONTRAST	LANGUAGE
---------	--------------------	--------------	----------

DENSITY FUNCTION	┝_→	DENSITY ADJ. VALUET	ADJUST	CALC.DENSITY	VOLUME FLOW MEAS,	STD. VOL. CALC.	REFERENCE	EXP. COEF.	FIXED STD.			TARGET Material	EXP. COEF.
						3	3	3	3	(3)	(3)	a a	3)

BATCHING -		BATCH VARIABLE	BATCH PRESET	PREWARN		BATCHING	MAX. BATCH TIME	BATCH CYCLES	RESET BAT.CYCLES
------------	--	-------------------	--------------	---------	--	----------	--------------------	--------------	---------------------

RELAYS		RELAY 1 FUNCTION	RELAY 1 ③ON-VALUE	RELAY 1 OFF-VALUE	RELAY 2 FUNCTION	RELAY 2 ON-VALUE	RELAY 2 OFF-VALUE	
--------	---------	---------------------	----------------------	----------------------	---------------------	---------------------	----------------------	--

PULS/FREQ.OUTPUT	PULSE VALUE PUI	ILSE WIDTH FULL SCALE FREQUENCY	FULL SCALE	SIGNAL SAFE MODE	SIMULATION FREQUENCY	NOMINAL FREQUENCY

CURRENT OUTPUT 1/2>	ASSIGN OUTPUT	ZERO SCALE	FULL SCALE 1	DUAL RANGE MODE	FULL SCALE 2	ACTIVE RANGE	TIME CONSTANT	CURRENT SPAN	FAIL SAFE MODE 3	SIMULATION	CALIBRATION CURRENT 1 ^{1 mA}	CALIBRATION CURRENT ① ²⁰ mA	NOMINAL CURRENT

						r					
SYSTEM-UNITS -	 MASSFLOW UNIT	MASS UNIT	VOL. FLOW UNIT	VOLUME UNIT	GALLONS/ BARREL	STDVOL.FLOW	STD. VOLUME UNIT	DENSITY UNIT	STD. DENSITY	TEMPERATURE UNIT	NOM. DIAM.E UNIT

TOTALIZE	s —		TOTALIZER 1 OVERFLOW	TOTALIZER 2	TOTALIZER 2 OVERFLOW	RESET TOTALIZER	ASSIGN TOTAL 1	ASSIGN TOTAL 2	
----------	-----	--	-------------------------	-------------	-------------------------	--------------------	----------------	----------------	--

PROCESS-VARIABLE	MASSFLOW	VOLUME FLOW	STD. VOLUME	\sim		DENSITY	CALC. DENSITY	TEMPERATURE
------------------	----------	-------------	-------------	--------	--	---------	---------------	-------------